Evolution Hardware

Chemwatch: 5656-73 Version No: 2.1

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Chemwatch Hazard Alert Code: 1

Issue Date: 22/02/2024 Print Date: 23/02/2024 L.GHS.AUS.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product name	Evostone	
Chemical Name	Not Applicable	
Synonyms	Evo	
Chemical formula	Not Applicable	
Other means of identification	Not Available	
Relevant identified uses of the substance or mixture and uses advised against		
	Solid Surface Benchtops.	

Registered company name	Evolution Hardware
Address	16 Burgess Drive Shearwater TAS 7307 Australia
Telephone	+61 407 804 740
Fax	Not Available
Website	www.evostone.com.au
Email	admin@evolutionhardware.com.au

Emergency telephone number

Association / Organisation	Evolution Hardware
Emergency telephone numbers	0419 933 764
Other emergency telephone numbers	+61 419 933 764 (International)

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	Not Applicable	
Classification [1]	Serious Eye Damage/Eye Irritation Category 2B	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)	Not Applicable
Signal word	Warning

Hazard statement(s)

H320	Causes eye irritation.

Precautionary statement(s) Prevention

P264	Wash all exposed external body areas thoroughly after handling.

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P337+P313	If eye irritation persists: Get medical advice/attention.

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

Issue Date: 22/02/2024 Print Date: 23/02/2024

Not Applicable

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
21645-51-2	<=70	alumina hydrate
25037-66-5	23-33	phthalic/ maleic anhydride/ propylene glycol resin
9011-11-4	5-15	styrene/alpha-methylstyrene copolymer
Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available		

SECTION 4 First aid measures

Description	of first	aid	measures
Describition	ULILISE	aıu	IIIcasulcs

escription of first aid measur	es	
Eye Contact	If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.	
Skin Contact	If skin or hair contact occurs: Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. In case of burns: Immediately apply cold water to burn either by immersion or wrapping with saturated clean cloth. DO NOT remove or cut away clothing over burnt areas. DO NOT pull away clothing which has adhered to the skin as this can cause further injury. DO NOT break blister or remove solidified material. Quickly cover wound with dressing or clean cloth to help prevent infection and to ease pain. For large burns, sheets, towels or pillow slips are ideal; leave holes for eyes, nose and mouth. DO NOT apply ointments, oils, butter, etc. to a burn under any circumstances. Water may be given in small quantities if the person is conscious. Alcohol is not to be given under any circumstances. Reassure. Treat for shock by keeping the person warm and in a lying position. Seek medical aid and advise medical personnel in advance of the cause and extent of the injury and the estimated time of arrival of the patient.	
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as train Perform CPR if necessary. Transport to hospital, or doctor. 	
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. 	

Indication of any immediate medical attention and special treatment needed

► Seek medical advice.

Treat symptomatically.

SECTION 5 Firefighting measures

Extinguishing media

- ▶ Foam
- Dry chemical powder.
- ► BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
 Fire Fighting
 Prevent, by any means available, spillage from er
 - Prevent, by any means available, spillage from entering drains or water courses.
 Use water delivered as a fine spray to control fire and cool adjacent area.
 - DO NOT approach containers suspected to be hot.

Chemwatch: 5656-73 Page 3 of 12 Issue Date: 22/02/2024 Version No: 2.1 Print Date: 23/02/2024 **Evostone**

	 Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) - according to the circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions. Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions). Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive intuiture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and ferevely if ignited - particles exceeding his limit will generally not form flammable dust clouds; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion. In the same way as gases and vapours, dusts in the form of a cloud are only ignitiable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (LEL) as applicable to dust clouds but only the LEL is of practical user, this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Mirimum Explosible Concentration", MEC). When processed with flammable liquids/vapors/mists, ignitable (hybrid) mixtures may be formed with combustible dusts. Ignitable mixtures will increase the rate of explosion pressure rise and the Minimum Ignition Energy (the minimum amount of energy required to ignite dust clouds - MED) will be lower than the pure dust in mi
HAZCHEM	Not Applicable

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Major Spills	Moderate hazard. CAUTION: Advise personnel in area. Alert Emergency Services and tell them location and nature of hazard. Control personal contact by wearing protective clothing. Prevent, by any means available, spillage from entering drains or water courses. Recover product wherever possible. If DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. If contamination of drains or waterways occurs, advise Emergency Services.
Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Use dry clean up procedures and avoid generating dust. Place in a suitable, labelled container for waste disposal.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Safe handling

- ▶ Avoid all personal contact, including inhalation. ▶ Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.

Issue Date: **22/02/2024**Print Date: **23/02/2024**

- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- ► DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions)
- Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame.
- ► Establish good housekeeping practices.
- ▶ Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds.
- Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area.
- Do not use air hoses for cleaning.
- Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used.
- Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition.
- Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance.
- Do not empty directly into flammable solvents or in the presence of flammable vapors.
- The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

Other information

- Store in original containers.
 Keep containers securely sealed.
- Store in a cool, dry area protected from environmental extremes
- Store away from incompatible materials and foodstuff containers
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

For major quantities:

- Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams).
- Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities.

Conditions for safe storage, including any incompatibilities

Suitable container Polyethylene or polypropylene container. Check all containers are clearly labelled and free from leaks.	
Storage incompatibility	Avoid reaction with oxidising agents

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2		TEEL-3
alumina hydrate	8.7 mg/m3	73 mg/m3		440 mg/m3
Ingredient	Original IDLH		Revised IDLH	
alumina hydrate	Not Available		Not Available	
phthalic/ maleic anhydride/ propylene glycol resin	Not Available		Not Available	
styrene/ alpha-methylstyrene copolymer	Not Available		Not Available	

MATERIAL DATA

For aluminium oxide:

The experimental and clinical data indicate that aluminium oxide acts as an "inert" material when inhaled and seems to have little effect on the lungs nor does it produce significant organic disease or toxic effects when exposures are kept under reasonable control.

[Documentation of the Threshold Limit Values], ACGIH, Sixth Edition

For aluminium oxide and pyrophoric grades of aluminium:

Twenty seven year experience with aluminium oxide dust (particle size 96% 1,2 um) without adverse effects either systemically or on the lung, and at a calculated concentration equivalent to 2 mg/m3 over an 8-hour shift has lead to the current recommendation of the TLV-TWA.

The limit should also apply to aluminium pyro powders whose toxicity is reportedly greater than aluminium dusts and should be protective against lung changes.

Chemwatch: 5656-73 Version No: 2.1

Page 5 of 12

Evostone

Issue Date: 22/02/2024 Print Date: 23/02/2024

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- Fig. If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;

- ▶ Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 ft/min)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 ft/min)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range	
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents	
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity	
3: Intermittent, low production.	3: High production, heavy use	
4: Large hood or large air mass in motion	4: Small hood-local control only	

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted. accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 ft/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations. producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Individual protection measures, such as personal protective equipment

Eve and face protection

- Safety glasses with side shields.
- ► Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent]
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

Skin protection

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact.
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Hands/feet protection

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min · Poor when glove material degrades
- For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on

Issue Date: 22/02/2024 Page 6 of 12 Print Date: 23/02/2024

consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- ▶ When handling hot materials wear heat resistant, elbow length gloves.
- Rubber gloves are not recommended when handling hot objects, materials
- ▶ Protective gloves eg. Leather gloves or gloves with Leather facing

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene.
- nitrile rubber.
- butvl rubber.
- ► fluorocaoutchouc
- polyvinyl chloride
- Gloves should be examined for wear and/ or degradation constantly.

Body protection

See Other protection below

Other protection

- When handling hot or molten liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.
- Usually handled as molten liquid which requires worker thermal protection and increases hazard of vapour exposure.
- ► CAUTION: Vapours may be irritating
- Overalls. P.V.C apron.
- Barrier cream.
- Skin cleansing cream.
- ► Eye wash unit.

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A P1 Air-line*	-	A PAPR-P1
up to 50 x ES	Air-line**	A P2	A PAPR-P2
up to 100 x ES	-	A P3	-
		Air-line*	-
100+ x ES	-	Air-line**	A PAPR-P3

* - Negative pressure demand ** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- · Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- · Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- · Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- · Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)
- · Use approved positive flow mask if significant quantities of dust becomes airborne.
- $\boldsymbol{\cdot}$ Try to avoid creating dust conditions.

Class P2 particulate filters are used for protection against mechanically and thermally generated particulates or both.

P2 is a respiratory filter rating under various international standards, Filters at least 94% of airborne particles Suitable for:

- · Relatively small particles generated by mechanical processes eg. grinding, cutting, sanding, drilling, sawing.
- \cdot Sub-micron thermally generated particles e.g. welding fumes, fertilizer and bushfire smoke.
- · Biologically active airborne particles under specified infection control applications e.g. viruses, bacteria, COVID-19, SARS

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Solid pellets.			
Physical state	Solid	Relative density (Water = 1)	Not Available	
Odour	Not Available	Partition coefficient n-octanol / water	Not Available	
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available	
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available	
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available	

Issue Date: 22/02/2024 Print Date: 23/02/2024

Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7	
 Chemical stability Product is considered stable. Hazardous polymerisation will not occur. 		
Possibility of hazardous reactions	section 7	
Conditions to avoid	See section 7	
Incompatible materials	See section 7	
Hazardous decomposition products	See section 5	

SECTION 11 Toxicological information

Information on toxicological effects

ı	Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.
ı	Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of
ı	individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the
ı	irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens,
ı	may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract
ı	irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular
ı	system.

Inhalation hazard is increased at higher temperatures.

- Usually handled as molten liquid which requires worker thermal protection and increases hazard of vapour exposure.
- CAUTION: Vapours may be irritating.

Ingestion Accidental ingestion of the material may be damaging to the health of the individual.

Skin Contact

The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

Inhaled

It has either been demonstrated or it is expected that when the material is applied to the eye(s) of animals, it produces severe ocular lesions which are present twenty-four hours or more after instillation.

Chronic

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Evostone	TOXICITY	IRRITATION
	Not Available	Not Available
alumina hydrate	TOXICITY	IRRITATION
	Inhalation(Rat) LC50: >2.3 mg/l4h ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
	Oral (Rat) LD50: >2000 mg/kg ^[1]	Skin: no adverse effect observed (not irritating) ^[1]
phthalic/ maleic anhydride/ propylene glycol resin	TOXICITY	IRRITATION
	Not Available	Not Available
styrene/ alpha-methylstyrene copolymer	TOXICITY	IRRITATION
	Not Available	Not Available

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Evostone

For aluminium compounds:

Aluminium present in food and drinking water is poorly absorbed through the gastrointestinal tract. The bioavailability of aluminium is dependent on the form in which it is ingested and the presence of dietary constituents with which the metal cation can complex Ligands in food can have a

Issue Date: 22/02/2024 Print Date: 23/02/2024

marked effect on absorption of aluminium, as they can either enhance uptake by forming absorbable (usually water soluble) complexes (e.g., with carboxylic acids such as citric and lactic), or reduce it by forming insoluble compounds (e.g., with phosphate or dissolved silicate). Considering the available human and animal data it is likely that the oral absorption of aluminium can vary 10-fold based on chemical form alone. Although bioavailability appears to generally parallel water solubility, insufficient data are available to directly extrapolate from solubility in water to bioavailability.

For oral intake from food, the European Food Safety Authority (EFSA) has derived a tolerable weekly intake (TWI) of 1 milligram (mg) of aluminium per kilogram of bodyweight. In its health assessment, the EFSA states a medium bioavailability of 0.1 % for all aluminium compounds which are ingested with food. This corresponds to a systemically available tolerable daily dose of 0.143 microgrammes (µg) per kilogramme (kg) of body weight. This means that for an adult weighing 60 kg, a systemically available dose of 8.6 µg per day is considered safe. Based on a neuro-developmental toxicity study of aluminium citrate administered via drinking water to rats, the Joint FAO/WHO Expert Committee on Food Additives (JECFA) established a Provisional Tolerable Weekly Intake (PTWI) of 2 mg/kg bw (expressed as aluminium) for all aluminium compounds in food, including food additives. The Committee on Toxicity of chemicals in food, consumer products and the environment (COT) considers that the derivation of this PTWI was sound and that it should be used in assessing potential risks from dietary exposure to aluminium.

The Federal Institute for Risk Assessment (BfR) of Germany has assessed the estimated aluminium absorption from antiperspirants. For this purpose, the data, derived from experimental studies, on dermal absorption of aluminium from antiperspirants for healthy and damaged skin was used as a basis. At about 10.5 µg, the calculated systemic intake values for healthy skin are above the 8.6 µg per day that are considered safe for an adult weighing 60 kg. If aluminium -containing antiperspirants are used on a daily basis, the tolerable weekly intake determined by the EFSA is therefore exceeded. The values for damaged skin, for example injuries from shaving, are many times higher. This means that in case of daily use of an aluminium-containing antiperspirant alone, the TWI may be completely exhausted. In addition, further aluminium absorption sources such as food, cooking utensils and other cosmetic products must be taken into account Systemic toxicity after repeated exposure

No studies were located regarding dermal effects in animals following intermediate or chronic-duration dermal exposure to various forms of

When orally administered to rats, aluminium compounds (including aluminium nitrate, aluminium sulfate and potassium aluminium sulfate) have produced various effects, including decreased gain in body weight and mild histopathological changes in the spleen, kidney and liver of rats (104 mg Al/kg bw/day) and dogs (88-93 mg Al/kg bw/day) during subchronic oral exposure. Effects on nerve cells, testes, bone and stomach have been reported at higher doses. Severity of effects increased with dose.

The main toxic effects of aluminium that have been observed in experimental animals are neurotoxicity and nephrotoxicity. Neurotoxicity has also been described in patients dialysed with water containing high concentrations of aluminium, but epidemiological data on possible adverse effects in humans at lower exposures are inconsistent

Reproductive and developmental toxicity:

Studies of reproductive toxicity in male mice (intraperitoneal or subcutaneous administration of aluminium nitrate or chloride) and rabbits (administration of aluminium chloride by gavage) have demonstrated the ability of aluminium to cause testicular toxicity, decreased sperm quality in mice and rabbits and reduced fertility in mice. No reproductive toxicity was seen in females given aluminium nitrate by gavage or dissolved in drinking water. Multi-generation reproductive studies in which aluminium sulfate and aluminium ammonium sulfate were administered to rats in drinking water, showed no evidence of reproductive toxicity

High doses of aluminium compounds given by gavage have induced signs of embryotoxicity in mice and rats in particular, reduced fetal body weight or pup weight at birth and delayed ossification. Developmental toxicity studies in which aluminium chloride was administered by gavage to pregnant rats showed evidence of foetotoxicity, but it was unclear whether the findings were secondary to maternal toxicity. A twelve-month neuro-development with aluminium citrate administered via the drinking water to Sprague-Dawley rats, was conducted according to Good Laboratory Practice (GLP). Aluminium citrate was selected for the study since it is the most soluble and bioavailable aluminium salt. Pregnant rats were exposed to aluminium citrate from gestational day 6 through lactation, and then the offspring were exposed post-weaning until postnatal day 364. An extensive functional observational battery of tests was performed at various times. Evidence of aluminium toxicity was demonstrated in the high (300 mg/kg bw/day of aluminium) and to a lesser extent, the mid-dose groups (100 mg/kg bw/day of aluminium). In the high-dose group, the main effect was renal damage, resulting in high mortality in the male offspring. No major neurological pathology or neurobehavioural effects were observed, other than in the neuromuscular subdomain (reduced grip strength and increased foot splay). Thus, the lowest observed adverse effect level (LOAEL) was 100 mg/kg bw/day and the no observed adverse effect level (NOAEL) was 30 mg/kg bw/day. Bioavailability of aluminium chloride, sulfate and nitrate and aluminium hydroxide was much lower than that of aluminium citrate This study was used by JECFA as key study to derive the PTWI.

Aluminium compounds were non-mutagenic in bacterial and mammalian cell systems, but some produced DNA damage and effects on chromosome integrity and segregation in vitro. Clastogenic effects were also observed in vivo when aluminium sulfate was administered at high doses by gavage or by the intraperitoneal route. Several indirect mechanisms have been proposed to explain the variety of genotoxic effects elicited by aluminium salts in experimental systems. Cross-linking of DNA with chromosomal proteins, interaction with microtubule assembly and mitotic spindle functioning, induction of oxidative damage, damage of lysosomal membranes with liberation of DNAase, have been suggested to explain the induction of structural chromosomal aberrations, sister chromatid exchanges, chromosome loss and formation of oxidized bases in experimental systems. The EFSA Panel noted that these indirect mechanisms of genotoxicity, occurring at relatively high levels of exposure, are unlikely to be of relevance for humans exposed to aluminium via the diet. Aluminium compounds do not cause gene mutations in either bacteria or mammalian cells. Exposure to aluminium compounds does result in both structural and numerical chromosome aberrations both in in-vitro and in-vivo mutagenicity tests. DNA damage is probably the result of indirect mechanisms. The DNA damage was observed only at high exposure levels.

Carcinogenicity

The available epidemiological studies provide limited evidence that certain exposures in the aluminium production industry are carcinogenic to humans, giving rise to cancer of the lung and bladder. However, the aluminium exposure was confounded by exposure to other agents including polycyclic aromatic hydrocarbons, aromatic amines, nitro compounds and asbestos. There is no evidence of increased cancer risk in non-occupationally exposed persons.

Neurodegenerative diseases.

Following the observation that high levels of aluminium in dialysis fluid could cause a form of dementia in dialysis patients, a number of studies were carried out to determine if aluminium could cause dementia or cognitive impairment as a consequence of environmental exposure over long periods. Aluminium was identified, along with other elements, in the amyloid plaques that are one of the diagnostic lesions in the brain for Alzheimer disease, a common form of senile and pre-senile dementia. some of the epidemiology studies suggest the possibility of an association of Alzheimer disease with aluminium in water, but other studies do not confirm this association. All studies lack information on ingestion of aluminium from food and how concentrations of aluminium in food affect the association between aluminium in water and Alzheimer disease. There are suggestions that persons with some genetic variants may absorb more aluminium than others, but there is a need for more analytical research to determine whether aluminium from various sources has a significant causal association with Alzheimer disease and other neurodegenerative diseases. Aluminium is a neurotoxicant in experimental animals. However, most of the animal studies performed have several limitations and therefore cannot be used for quantitative risk assessment.

Contact sensitivity:

It has been suggested that the body burden of aluminium may be linked to different iseases. Macrophagic myofasciitis and chronic fatigue syndrome can be caused by aluminium-containing adjuvants in vaccines. Macrophagic myofasciitis (MMF) has been described as a disease in adults presenting with ascending myalgia and severe fatigue following exposure to aluminium hydroxide-containing vaccines The corresponding histological findings include aluminium-containing macrophages infiltrating muscle tissue at the injection site. The hypothesis is that the long-lasting granuloma triggers the development of the systemic syndrome.

Aluminium acts not only as an adjuvant, stimulating the immune system either to fend off infections or to tolerate antigens, it also acts as a sensitisers causing contact allergy and allergic contact dermatitis. In general, metal allergies are very common and aluminium is considered to be a weak allergen. A metal must be ionised to be able to act as a contact allergen, then it has to undergo haptenisation to be immunogenic and to initiate an immune response. Once inside the skin, the metal ions must bind to proteins to become immunologically reactive. The most important

Issue Date: 22/02/2024 Print Date: 23/02/2024

routes of exposure and sensitisation to aluminium are through aluminium-containing vaccines. One Swedish study showed a statistically significant association between contact allergy to aluminium and persistent itching nodules in children treated with allergen-specific immunotherapy (ASIT) Nodules were overrepresented in patients with contact allergy to aluminium Other routes of sensitisation reported in the literature are the prolonged use of aluminium-containing antiperspirants, topical medication, and tattooing of the skin with aluminium-containing pigments. Most of the patients experienced eczematous reactions whereas tattooing caused granulomas. Even though aluminium is used extensively in industry, only a low number of cases of occupational skin sensitisation to aluminium have been reported Systemic allergic contact dermatitis in the form of flare-up reactions after re-exposure to aluminium has been documented: pruritic nodules at present and previous injection sites, eczema at the site of vaccination as well as at typically atopic localisations after vaccination with aluminium-containing vaccines and/or patch testing with aluminium, and also after use of aluminium-containing toothpaste STYRENE/ ALPHA-No sensitisation responses were observed Directive (92/69/EEC) - Method B6 (OECD 406 method) No skin irritation Directive (92/69/EEC) -METHYL STYRENE Method B4 (OECD 404 method COPOLYMER **Evostone & ALUMINA HYDRATE & PHTHALIC/** MALEIC ANHYDRIDE/ PROPYLENE GLYCOL RESIN No significant acute toxicological data identified in literature search. & STYRENE/ ALPHA-**METHYLSTYRENE** COPOLYMER **Acute Toxicity** Carcinogenicity Skin Irritation/Corrosion Reproductivity × × Serious Eye Damage/Irritation STOT - Single Exposure Respiratory or Skin × × STOT - Repeated Exposure sensitisation

Legend:

Data either not available or does not fill the criteria for classification

– Data available to make classification

Aspiration Hazard

×

SECTION 12 Ecological information

Mutagenicity

×

Toxicity

	Endpoint	Test Duration (hr)	Species	Value	Source
Evostone	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	48h	Crustacea	>0.065mg/l	4
	EC50	96h	Algae or other aquatic plants	0.005mg/L	2
alumina hydrate	EC50	72h	Algae or other aquatic plants	0.017mg/L	2
	LC50	96h	Fish	0.57mg/l	2
	NOEC(ECx)	72h	Algae or other aquatic plants	>100mg/l	1
	Endpoint	Test Duration (hr)	Species	Value	Source
phthalic/ maleic anhydride/ propylene glycol resin	Not Available	Not Available	Not Available	Not Available	Not Available
. ,	Endpoint	Test Duration (hr)	Species	Value	Source
styrene/ alpha-methylstyrene copolymer	Not Available	Not Available	Not Available	Not Available	Not Available
Legend:	Ecotox databas		A Registered Substances - Ecotoxicological Informa quatic Hazard Assessment Data 6. NITE (Japan) - E		

For aluminium and its compounds and salts:

Despite its prevalence in the environment, no known form of life uses aluminium salts metabolically. In keeping with its pervasiveness, aluminium is well tolerated by plants and animals. Owing to their prevalence, potential beneficial (or otherwise) biological roles of aluminium compounds are of continuing interest.

Environmental fate:

Aluminium occurs in the environment in the form of silicates, oxides and hydroxides, combined with other elements such as sodium, fluorine and arsenic complexes with organic matter

Acidification of soils releases aluminium as a transportable solution. Mobilisation of aluminium by acid rain results in aluminium becoming available for plant uptake.

As an element, aluminum cannot be degraded in the environment, but may undergo various precipitation or ligand exchange reactions. Aluminum in compounds has only one oxidation state (+3), and would not undergo oxidation-reduction reactions under environmental conditions. Aluminum can be complexed by various ligands present in the environment (e.g., fulvic and humic acids). The solubility of aluminum in the environment will depend on the ligands present and the pH.

The trivalent aluminum ion is surrounded by six water molecules in solution. The hydrated aluminum ion, [Al(H2O)6]3+, undergoes hydrolysis, in which a stepwise deprotonation of the coordinated water ligands forms bound hydroxide ligands (e.g., [Al(H2O)5(OH)]2+, [Al(H2O)4(OH)2]+). The speciation of aluminum in water is pH dependent. The hydrated trivalent aluminum ion is the predominant form at pH levels below 4. Between pH 5 and 6, the predominant hydrolysis products are Al(OH)2+ and Al(OH)2+, while the solid Ál(OH)3 is most prevalent between pH 5.2 and 8.8. The soluble species Al(OH)4- is the predominant species above pH 9, and is the only species present above pH 10. Polymeric aluminum hydroxides appear between pH 4.7 and 10.5, and increase in size until they are transformed into colloidal particles of amorphous Al(OH)3, which crystallise to gibbsite in acid waters. Polymerisation is affected by the presence of dissolved silica; when enough silica is present, aluminum is precipitated as poorly crystallised clay mineral species.

Hydroxyaluminum compounds are considered amphoteric (e.g., they can act as both acids and bases in solution). Because of this property, aluminum hydroxides can act as buffers and resist pH changes within the narrow pH range of 4-5.

Monomeric aluminum compounds, typified by aluminum fluoride, chloride, and sulfate, are considered reactive or labile compounds, whereas polymeric aluminum species react much more slowly in the environment. Aluminum has a stronger attraction for fluoride in an acidic environment compared to other inorganic ligand.

The adsorption of aluminum onto clay surfaces can be a significant factor in controlling aluminum mobility in the environment, and these adsorption reactions, measured in one study at pH 3.0-4.1, have been observed to be very rapid. However, clays may act either as a sink or a source for soluble aluminum depending on the degree of aluminum saturation on the Chemwatch: **5656-73** Page **10** of **12**Version No: **2.1 Evostone**

Issue Date: **22/02/2024**Print Date: **23/02/2024**

clay surface

Within the pH range of 5-6, aluminum complexes with phosphate and is removed from solution. Because phosphate is a necessary nutrient in ecological systems, this immobilization of both aluminum and phosphate may result in depleted nutrient states in surface water.

Plant species and cultivars of the same species differ considerably in their ability to take up and translocate aluminum to above-ground parts. Tea leaves may contain very high concentrations of aluminum, >5,000 mg/kg in old leaves. Other plants that may contain high levels of aluminum include Lycopodium (Lycopodiaceae), a few ferns, Symplocos (Symplocaceae), and Orites (Proteaceae). Aluminum is often taken up and concentrated in root tissue. In sub-alpine ecosystems, the large root biomass of the Douglas fir, Abies amabilis, takes up aluminum and immobilizes it, preventing large accumulation in above-ground tissue. It is unclear to what extent aluminum is taken up into root food crops and leafy vegetables. An uptake factor (concentration of aluminum in the plant/concentration of aluminum in soil) of 0.004 for leafy vegetables and 0.00065 for fruits and tubers has been reported, but the pH and plant species from which these uptake factors were derived are unclear. Based upon these values, however, it is clear that aluminum is not taken up in plants from soil, but is instead biodiluted.

Aluminum concentrations in rainbow trout from an alum-treated lake, an untreated lake, and a hatchery were highest in gill tissue and lowest in muscle. Aluminum residue analyses in brook trout have shown that whole-body aluminum content decreases as the fish advance from larvae to juveniles. These results imply that the aging larvae begin to decrease their rate of aluminum uptake, to eliminate aluminum at a rate that exceeds uptake, or to maintain approximately the same amount of aluminum while the body mass increases. The decline in whole-body aluminum residues in juvenile brook trout may be related to growth and dilution by edible muscle tissue that accumulated less aluminum than did the other tissues. The greatest fraction of the gill-associated aluminum was not sorbed to the gill tissue, but to the gill mucus. It is thought that mucus appears to retard aluminum transport from solution to the membrane surface, thus delaying the acute biological response of the fish. It has been reported that concentrations of aluminum in whole-body tissue of the Atlantic salmon

repeated to the membrane surface, thus delaying the acute biological response of the fish. It has been reported that concentrations of aluminum in whole-body tissue of the Atlantic salmon exposed to high concentrations of aluminum ranging from 3 ug/g (for fish exposed to 33 ug/L) to 96 ug/g (for fish exposed to 264 ug/L) at pH 5.5. After 60 days of exposure, BCFs ranged from 76 to 190 and were directly related to the aluminum exposure concentration. In acidic waters (pH 4.6-5.3) with low concentrations of calcium (0.5-1.5 mg Ca/L), labile aluminum between 25 and 75 ug/L is toxic. Because aluminum is toxic to many aquatic species, it is not bioaccumulated to a significant degree (BCF <300) in most fish and shellfish; therefore, consumption of contaminated fish does not appear to be a significant source of aluminum exposure in humans.

Bioconcentration of aluminum has also been reported for several aquatic invertebrate species. BCF values ranging from 0.13 to 0.5 in the whole-body were reported for the snail. Bioconcentration of aluminum has also been reported for aquatic insects.

Ecotoxicity:

Freshwater species pH >6.5

Fish: Acute LC50 (48-96 h) 5 spp: 0.6 (Salmo salar) - 106 mg/L; Chronic NOEC (8-28 d): 7 spp,NOEC, 0.034-7.1 mg/L. The lowest measured chronic figure was an 8-d LC50 of 0.17 mg/L for *Micropterus* sp.

Amphibian: Acute LC50 (4 d): *Bufo americanus*, 0.86-1.66 mg/L; Chronic LC50 (8-d) 2.28 mg/L Crustaceans LC50 (48 h): 1 sp 2.3-36 9 mg/L; Chronic NOEC (7-28 d) 3 spp, 0.136-1.72 mg/L

Algae EC50 (96 h): population growth, 0.46-0.57 mg/L; 2 spp, chronic NOEC, 0.8-2.0 mg/L $_{\rm c}$

Freshwater species pH <6.5 (all between pH 4.5 and 6.0)

Fish LC50 (24-96 h): 4 spp, 0.015 (S. trutta) - 4.2 mg/L; chronic data on Salmo trutta, LC50 (21-42 d) 0.015- 0.105 mg/L

Amphibians LC50 (4-5 d): 2 spp, 0.540-2.670 m/L (absolute range 0.40-5.2 mg/L)

Alga: 1 sp NOEC growth 2.0 mg/L

Among freshwater aquatic plants, single-celled plants are generally the most sensitive to aluminium. Fish are generally more sensitive to aluminium than aquatic invertebrates. Aluminium is a gill toxicant to fish, causing both ionoregulatory and respiratory effects.

The bioavailability and toxicity of aluminium is generally greatest in acid solutions. Aluminium in acid habitats has been observed to be toxic to fish and phytoplankton. Aluminium is generally more toxic over the pH range 4.4.5.4, with a maximum toxicity occurring around pH 5.0.5.2. The inorganic single unit aluminium species (Al(OH)2 +) is thought to be the most toxic. Under very acid conditions, the toxic effects of the high H+ concentration appear to be more important than the effects of low concentrations of aluminium; at approximately neutral pH values, the toxicity of aluminium is greatly reduced. The solubility of aluminium is also enhanced under alkaline conditions, due to its amphoteric character, and some researchers found that the acute toxicity of aluminium increased from pH 7 to pH 9. However, the opposite relationship was found in other studies. The uptake and toxicity of aluminium in freshwater organisms generally decreases with increasing water hardness under acidic, neutral and alkaline conditions. Complexing agents such as fluoride, citrate and humic substances reduce the availability of aluminium to organisms, resulting in lower toxicity. Silicon can also reduce aluminium toxicity to fish.

Drinking Water Standards:
aluminium: 200 ug/l (UK max.)
200 ug/l (WHO guideline)
chloride: 400 mg/l (UK max.)
250 mg/l (WHO guideline)
fluoride: 1.5 mg/l (UK max.)
1.5 mg/l (WHO guideline)
nitrate: 50 mg/l (UK max.)
50 mg/l (WHO guideline)
sulfate: 250 mg/l (UK max.)
Soil Guideline: none available.
Air Quality Standards: none available.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients	No Data available for all ingredients

Bioaccumulative potential

Ingredient	Bioaccumulation
	No Data available for all ingredients

Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- DO NOT allow wash water from cleaning or process equipment to enter drains
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.

SECTION 14 Transport information

Chemwatch: **5656-73**Version No: **2.1**

Evostone

Issue Date: 22/02/2024 Print Date: 23/02/2024

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
alumina hydrate	Not Available
phthalic/ maleic anhydride/ propylene glycol resin	Not Available
styrene/ alpha-methylstyrene copolymer	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

Product name	Ship Type
alumina hydrate	Not Available
phthalic/ maleic anhydride/ propylene glycol resin	Not Available
styrene/ alpha-methylstyrene copolymer	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

alumina hydrate is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

phthalic/ maleic anhydride/ propylene glycol resin is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

styrene/ alpha-methylstyrene copolymer is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

Additional Regulatory Information

Not Applicable

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (alumina hydrate; phthalic/ maleic anhydride/ propylene glycol resin; styrene/ alpha-methylstyrene copolymer)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	No (phthalic/ maleic anhydride/ propylene glycol resin; styrene/ alpha-methylstyrene copolymer)
Japan - ENCS	No (styrene/ alpha-methylstyrene copolymer)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	No (phthalic/ maleic anhydride/ propylene glycol resin)
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (phthalic/ maleic anhydride/ propylene glycol resin; styrene/ alpha-methylstyrene copolymer)
Vietnam - NCI	Yes
Russia - FBEPH	No (phthalic/ maleic anhydride/ propylene glycol resin; styrene/ alpha-methylstyrene copolymer)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date 22/02/2024

Issue Date: **22/02/2024**Print Date: **23/02/2024**

Initial Date

22/02/2024

SDS Version Summary

Version	Date of Update	Sections Updated
2.1	22/02/2024	Hazards identification - Classification, Name

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- ▶ PC TWA: Permissible Concentration-Time Weighted Average
- ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit
- ► IARC: International Agency for Research on Cancer
- ACGIH: American Conference of Governmental Industrial Hygienists
- ▶ STEL: Short Term Exposure Limit
- ► TEEL: Temporary Emergency Exposure Limit。
- ▶ IDLH: Immediately Dangerous to Life or Health Concentrations
- ► ES: Exposure Standard
- ► OSF: Odour Safety Factor
- NOAEL: No Observed Adverse Effect Level
- ▶ LOAEL: Lowest Observed Adverse Effect Level
- ► TLV: Threshold Limit Value
- LOD: Limit Of Detection
- ► OTV: Odour Threshold Value
- ► BCF: BioConcentration Factors
- ▶ BEI: Biological Exposure Index
- ► DNEL: Derived No-Effect Level
- ▶ PNEC: Predicted no-effect concentration
- ▶ AIIC: Australian Inventory of Industrial Chemicals
- ▶ DSL: Domestic Substances List
- ▶ NDSL: Non-Domestic Substances List
- ▶ IECSC: Inventory of Existing Chemical Substance in China
- ▶ EINECS: European INventory of Existing Commercial chemical Substances
- ► ELINCS: European List of Notified Chemical Substances
- ► NLP: No-Longer Polymers
- ► ENCS: Existing and New Chemical Substances Inventory
- ► KECI: Korea Existing Chemicals Inventory
- ► NZIoC: New Zealand Inventory of Chemicals
- ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances
- ► TSCA: Toxic Substances Control Act
- ► TCSI: Taiwan Chemical Substance Inventory
- ▶ INSQ: Inventario Nacional de Sustancias Químicas
- ► NCI: National Chemical Inventory
- ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.

Evo Glue

Evolution Hardware

Chemwatch: 5329-40 Version No: 8.1

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: 20/08/2021 Print Date: 23/02/2024 L.GHS.AUS.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier	
Product name	Evo Glue
Chemical Name	Not Applicable
Synonyms	Not Available
Proper shipping name	ADHESIVES containing flammable liquid
Chemical formula	Not Applicable
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Solid surface adhesive.
--------------------------	-------------------------

Details of the manufacturer or supplier of the safety data sheet

Registered company name	Evolution Hardware
Address	16 Burgess Drive Shearwater TAS 7307 Australia
Telephone	+61 407 804 740
Fax	Not Available
Website	www.evostone.com.au
Email	admin@evolutionhardware.com.au

Emergency telephone number

Association / Organisation	Evolution Hardware
Emergency telephone numbers	0419 933 764
Other emergency telephone numbers	+61 419 933 764 (International)

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	S6
Classification [1]	Flammable Liquids Category 2, Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1A, Serious Eye Damage/Eye Irritation Category 2A, Sensitisation (Respiratory) Category 1, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Signal word

Danger

Hazard statement(s)

H225	Highly flammable liquid and vapour.	
H315	Causes skin irritation.	
H317	May cause an allergic skin reaction.	
H319	Causes serious eye irritation.	
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.	
H335	May cause respiratory irritation.	
H336	May cause drowsiness or dizziness.	

Issue Date: 20/08/2021 Print Date: 23/02/2024

AUH019 May form explosive peroxides.

Precautionary statement(s) Prevention

P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.	
P261	woid breathing mist/vapours/spray.	
P271	se only outdoors or in a well-ventilated area.	
P280	Wear protective gloves, protective clothing, eye protection and face protection.	
P284	[In case of inadequate ventilation] wear respiratory protection.	
P240	Ground and bond container and receiving equipment.	
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.	
P242	Use non-sparking tools.	
P243	Take action to prevent static discharges.	
P264	Wash all exposed external body areas thoroughly after handling.	
P272	Contaminated work clothing should not be allowed out of the workplace.	

Precautionary statement(s) Response

P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.		
P342+P311	experiencing respiratory symptoms: Call a POISON CENTER/doctor/physician/first aider.		
P370+P378	case of fire: Use alcohol resistant foam or normal protein foam to extinguish.		
P302+P352	IF ON SKIN: Wash with plenty of water and soap.		
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.		
P312	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.		
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.		
P337+P313	If eye irritation persists: Get medical advice/attention.		
P362+P364	Take off contaminated clothing and wash it before reuse.		
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].		

Precautionary statement(s) Storage

	-	
P403+P235	Store in a well-ventilated place. Keep cool.	
P405	Store locked up.	

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight] Name		
80-62-6	30-60	methyl methacrylate	
57516-88-8	<10	TDI/ glycerol ethoxylated, propoxylated copolymer	
Not Available	Ingredients determined not to be hazardous		
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available		

SECTION 4 First aid measures

Description of first aid measur	es
Eye Contact	If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.

Chemwatch: 5329-40 Page 3 of 12 Version No: 8.1

Evo Glue

 Transport to hospital, or doctor, without delay If swallowed do NOT induce vomiting If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. ▶ Observe the patient carefully. Ingestion

Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink

Seek medical advice.

Indication of any immediate medical attention and special treatment needed

Significant effects developing over a work-shift are not detected by symptomatology, blood pressure, respiratory function testing, haemoglobin and white cell count, urinalysis and blood chemistry. Effects may occur in high concentration exposure groups with regard to serum glucose and blood urea, nitrogen, cholesterol, albumin and total bilirubin values Possible alterations occur in skin and nervous system symptomatology, urinalysis findings and serum triglycerides. Diagnostic signs taken as indicative of methyl methacrylate-induced local neurotoxicity include sensory nerve distal conduction velocities. These deficits appear to result from diffusion of the substance into neurons, lysis of membrane lipids and demyelination

SECTION 5 Firefighting measures

Extinguishing media

- ▶ Foam
- Dry chemical powder
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result Advice for firefighters Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive Wear breathing apparatus plus protective gloves in the event of a fire.

Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). Fight fire from a safe distance, with adequate cover. Fire Fighting If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control the fire and cool adjacent area.

Avoid spraying water onto liquid pools. Do not approach containers suspected to be hot.

Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire.

 Liquid and vapour are highly flammable. ▶ Severe fire hazard when exposed to heat, flame and/or oxidisers.

Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers.

On combustion, may emit toxic fumes of carbon monoxide (CO).

Fire/Explosion Hazard Combustion products include:

> carbon dioxide (CO2) nitrogen oxides (NOx)

other pyrolysis products typical of burning organic material.

May emit clouds of acrid smoke

HAZCHEM

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Remove all ignition sources. Clean up all spills immediately Avoid breathing vapours and contact with skin and eyes. **Minor Spills** Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Collect residues in a flammable waste container Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course **Major Spills** Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse /absorb vapour.

Issue Date: 20/08/2021

Print Date: 23/02/2024

Evo Glue

Issue Date: 20/08/2021 Print Date: 23/02/2024

- Contain spill with sand, earth or vermiculite.
- Use only spark-free shovels and explosion proof equipment.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Safe handling

Precautions for safe handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights, heat or ignition sources.
- When handling, DO NOT eat, drink or smoke
- Vapour may ignite on pumping or pouring due to static electricity.
- DO NOT use plastic buckets
 - Earth and secure metal containers when dispensing or pouring product.
 - Use spark-free tools when handling.
 - Avoid contact with incompatible materials.
 - Keep containers securely sealed.
 - Avoid physical damage to containers.
 - Always wash hands with soap and water after handling.
 - Work clothes should be laundered separately.
 - Use good occupational work practice.
 - Observe manufacturer's storage and handling recommendations contained within this SDS.
 - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
 - ▶ Store in original containers in approved flame-proof area.
 - No smoking, naked lights, heat or ignition sources
 - DO NOT store in pits, depression, basement or areas where vapours may be trapped
 - Keep containers securely sealed.
 - Store away from incompatible materials in a cool, dry well ventilated area.
 - Protect containers against physical damage and check regularly for leaks.
 - Observe manufacturer's storage and handling recommendations contained within this MSDS.
 - Tank storage: Tanks must be specifically designed for use with this product. Bulk storage tanks should be diked (bunded). Locate tanks away from heat and other sources of ignition. Cleaning, inspection and maintenance of storage tanks is a specialist operation, which requires the implementation of strict procedures and precautions.

Other information

- Keep in a cool place. Electrostatic charges will be generated during pumping. Electrostatic discharge may cause fire. Ensure electrical continuity by bonding and grounding (earthing) all equipment to reduce the risk. The vapours in the head space of the storage vessel may lie in the flammable/explosive range and hence may be flammable.
- For containers, or container linings use mild steel, stainless steel. Examples of suitable materials are: high density polyethylene (HDPE), polypropylene (PP), and Viton (FMK), which have been specifically tested for compatibility with this product.
- For container linings, use amine-adduct cured epoxy paint.
- For seals and gaskets use: graphite, PTFE, Viton A, Viton B.
- Lusuitable material: Some synthetic materials may be unsuitable for containers or container linings depending on the material specification and intended use. Examples of materials to avoid are: natural rubber (NR), nitrile rubber (NBR), ethylene propylene rubber (EPDM), polymethyl methacrylate (PMMA), polystyrene, polyvinyl chloride (PVC), polyisobutylene. However, some may be suitable for glove
- Do not cut, drill, grind, weld or perform similar operations on or near containers. Containers, even those that have been emptied, can contain explosive vapours.

Conditions for safe storage, including any incompatibilities

Suitable container

- Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- Check that containers are clearly labelled and free from leaks

Storage incompatibility

Avoid storage with oxidisers

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	methyl methacrylate	Methyl methacrylate	50 ppm / 208 mg/m3	416 mg/m3 / 100 ppm	Not Available	Not Available
Australia Exposure Standards	TDI/ glycerol ethoxylated, propoxylated copolymer	Isocyanates, all (as-NCO)	0.02 mg/m3	0.07 mg/m3	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
methyl methacrylate	Not Available	Not Available	Not Available
Ingredient Original IDLH Revised IDLH			

Chemwatch: 5329-40 Version No: 8.1

Evo Glue

Page 5 of 12

Original IDLH Revised IDLH Ingredient methyl methacrylate 1,000 ppm Not Available TDI/ glycerol ethoxylated, Not Available Not Available propoxylated copolymer

MATERIAL DATA

NOTE D: Certain substances which are susceptible to spontaneous polymerisation or decomposition are generally placed on the market in a stabilised form. It is in this form that they are listed on Annex I

When they are placed on the market in a non-stabilised form, the label must state the name of the substance followed by the words "non-stabilised"

European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Appropriate engineering controls

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted. accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

- · Adequate ventilation is typically taken to be that which limits the average concentration to no more than 25% of the LEL within the building, room or enclosure containing the dangerous substance.
- · Ventilation for plant and machinery is normally considered adequate if it limits the average concentration of any dangerous substance that might potentially be present to no more than 25% of the LEL. However, an increase up to a maximum 50% LEL can be acceptable where additional safeguards are provided to prevent the formation of a hazardous explosive atmosphere. For example, gas detectors linked to emergency shutdown of the process might be used together with maintaining or increasing the exhaust ventilation on solvent evaporating overs and gas turbine enclosures.
- · Temporary exhaust ventilation systems may be provided for non-routine higher-risk activities, such as cleaning, repair or maintenance in tanks or other confined spaces or in an emergency after a release. The work procedures for such activities should be carefully considered.. The atmosphere should be continuously monitored to ensure that ventilation is adequate and the area remains safe. Where workers will enter the space, the ventilation should ensure that the concentration of the dangerous substance does not exceed 10% of the LEL (irrespective of the provision of suitable breathing apparatus)

Individual protection measures, such as personal protective equipment

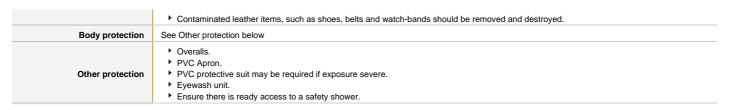
- Safety glasses with side shields.
- Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent]
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eve irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

Skin protection

Eye and face protection

See Hand protection below

- Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber


Hands/feet protection

NOTE: The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Issue Date: 20/08/2021

Print Date: 23/02/2024

Issue Date: **20/08/2021**Print Date: **23/02/2024**

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Evo Glue

Material	СРІ
PE/EVAL/PE	A
PVA	A
TEFLON	A
BUTYL	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS	-	A-PAPR-AUS / Class 1
up to 50 x ES	-	A-AUS / Class 1	-
up to 100 x ES	-	A-2	A-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Off-white to yellow flammable liquid with methacrylate odour; does	not mix with water.	
Physical state	Liquid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Applicable	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	4000-5000
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	13.8 methyl methacrylate	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	12.5	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	2.1	Volatile Component (%vol)	>50
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	8
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Stable under controlled storage conditions provided material contains adequate stabiliser / polymerisation inhibitor. Bulk storages may have special storage requirements WARNING: Gradual decomposition in strong, sealed containers may lead to a large pressure build-up and subsequent explosion. Rapid and violent polymerisation possible at temperatures above 32 deg c.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

^{*} Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Version No: 8.1

Evo Glue

Issue Date: 20/08/2021 Print Date: 23/02/2024

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular

Workers in plants manufacturing methyl methacrylate have complained of headaches, pains in the extremities, fatigue, sleep disturbance, irritability and loss of memory. A Russian report associated disturbances in the level of insulin, prolactin and circulating somatotropic hormone in women to occupational exposure to methyl methacrylate.

Inhalation of 47 ppm in dogs produces hypotension, signs of central nervous system (CNS) depression, hepatic and renal degeneration and death in respiratory arrest

Ingestion

Accidental ingestion of the material may be damaging to the health of the individual.

Oral doses of 5 ml/kg methyl methacrylate in dogs produce hypotension, signs of central nervous system (CNS) depression, hepatic and renal degeneration and death in respiratory arrest

At sufficiently high doses the material may be hepatotoxic (i.e. poisonous to the liver). Signs may include nausea, stomach pains, low fever, loss of appetite, dark urine, clay-coloured stools, jaundice (yellowing of the skin or eyes)

Skin Contact

Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eve

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive.

Chronic

Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive.

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance.

Prolonged and repeated exposures can cause liver and kidney damage. Hypotension induced by methyl methacrylate in surgical bone cement has been followed by cardiac arrest with at least one fatality in a patient undergoing surgery reported.

An increased mortality from colon and rectal cancer in white male employees exposed for at least 10-months to acrylate monomer (including methyl methacrylate) has been reported in one cohort but not in others where acrylate exposures were controlled. Incorporation of up to 2000 ppm methyl methacrylate in drinking water of rats for up to two-years did not induce any treatment-related pathology

although subcutaneous and intraperitoneal implants of freshly polymerised material for up to 39 months produced local fibrosarcoma. Inhalation of methyl methacrylate by rats and mice of both sexes produced inflammation of the nasal cavity and degeneration of the olfactory sensory epithelium and epithelial hyperplasia of the nasal cavity in mice (exposure occurred over two years)

For Ober	TOXICITY	IRRITATION
Evo Glue	Not Available	Not Available
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: >5000 mg/kg ^[2]	Eye (rabbit): 150 mg
methyl methacrylate	Inhalation(Rat) LC50: 29.8 mg/l4h ^[1]	Skin (rabbit): 10000 mg/kg (open)
	Oral (Rat) LD50: 7872 mg/kg ^[2]	
TDI/ glycerol ethoxylated,	TOXICITY	IRRITATION
propoxylated copolymer	Not Available	Not Available
Legend:	1 Value obtained from Europe ECHA Registered Subst	ances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise
Legena.	1. Value obtained from Europe ECHA Registered Subsid	•

specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

METHYL METHACRYLATE

Inhalation (human) TCLo: 60 mg/m3(15 ppm) [* Manuf. Rohm & Haas]

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to

Page 8 of 12

Evo Glue

Issue Date: **20/08/2021**Print Date: **23/02/2024**

the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

For methyl methacrylate:

Acute toxicity: MMA is rapidly absorbed after oral or inhalatory administration. *In vitro* skin absorption studies in human skin indicate that MMA can be absorbed through human skin. After inhalation to rats 10 to 20% of the substance is deposited in the upper respiratory tract where it is metabolised by local tissue esterases.

Acute toxicity of MMA by the oral, dermal, and inhalative routes is low as judged by tests with different species: The oral LD50 for rats, mice, and rabbits is found to exceed 5000 mg/kg bw.

Acute inhalation toxicity for rats and mice is described by LC50 values of > 25 mg/l/4 hours.

Acute dermal toxicity is reported for rabbits to exceed 5000 mg/kg bw. Skin and respiratory irritation are reported for subjects exposed to monomeric MMA. The substance has been shown to produce severe skin irritation when tested undiluted on rabbit skin. There are indications from studies in animals that MMA can be irritating to the respiratory system. In contact with eyes MMA has shown only weak irritation of the conjunctivae. MMA has a moderate to strong sensitising potential in experimental animals. Cases of contact dermatitis have been reported for workers exposed to the monomeric chemical. There is no convincing evidence that MMA is a respiratory sensitiser in humans.

The lead effect caused by MMA is a degeneration of the olfactory region of the nose being the most sensitive target tissue. For this effect a NOAEC of 25 ppm (104 mg/m3) in a two-year inhalation study in rats was identified but only slight effects on the olfactory tissues have been observed at 100 ppm. Concerning systemic effects, two different valid studies have been considered for identifying a N(L)OAEL. Due to different dose selections, different values for N(L)OEALs are available. The LOEALs and the NOEALs for female rats ranges between 400 and 500 ppm and from 100 to 250 ppm respectively. In subchronic inhalation studies systemic toxic effects were seen in rats >1000 ppm, prescrively in mice >500 ppm, including degenerative and necrotic lesions in liver, kidney, brain, and atrophic changes in spleen and bone marrow. These effects were not seen in chronic studies up to 1000 ppm. Oral administration to rats resulted in a NOAEL of 200 mg/kg bw/d.

MMA has *in vitro* the potential for induction of mutagenic effects, especially clastogenicity. However, this potential is limited to high doses with strong toxic effects. Furthermore, the negative *in vivo* micronucleus test and the negative dominant lethal assay indicate that this potential is not expressed *in vivo*. There is no relevant concern on carcinogenicity of MMA in humans and animals. Epidemiology data on increased tumour rates in exposed cohorts are of limited reliability and cannot be related to MMA as the solely causal agent.

MMA did not reveal an effect on male fertility when animals had been exposed to up to 9000 ppm. From the available developmental toxicity investigations, including an inhalation study according to OECD Guideline 414, no teratogenicity, embryotoxicity or foetotoxicity has been observed at exposure levels up to and including 2028 ppm (8425 mg/m3). The available human data on sexual disorders in male and female workers cannot be considered to conclude on reproductive toxicity effects of MMA due to the uncertain validity of the studies

Where no "official" classification for acrylates and methacrylates exists, there has been cautious attempts to create classifications in the absence of contrary evidence. For example

Monalkyl or monoarylesters of acrylic acids should be classified as R36/37/38 and R51/53

Monoalkyl or monoaryl esters of methacrylic acid should be classified as R36/37/38

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing.

Based on the available oncogenicity data and without a better understanding of the carcinogenic mechanism the Health and Environmental Review Division (HERD), Office of Toxic Substances (OTS), of the US EPA previously concluded that all chemicals that contain the acrylate or methacrylate moiety (CH2=CHCOO or CH2=C(CH3)COO) should be considered to be a carcinogenic hazard unless shown otherwise by adequate testing.

This position has now been revised and acrylates and methacrylates are no longer de facto carcinogens.

Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air.

Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture

On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult

to diagnose ACD to these compounds by patch testing.

Allergic Contact Dermatitis—Formation, Structural Requirements, and Reactivity of Skin Sensitizers.

Ann-Therese Karlberg et al; Chem. Res. Toxicol.2008,21,53-69

Polyethylene glycols (PEGs) have a wide variety of PEG-derived mixtures due to their readily linkable terminal primary hydroxyl groups in combination with many possible compounds and complexes such as ethers, fatty acids, castor oils, amines, propylene glycols, among other derivatives. PEGs and their derivatives are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners.

TDI/ GLYCEROL ETHOXYLATED, PROPOXYLATED COPOLYMER PEGs and PEG derivatives were generally regulated as safe for use in cosmetics, with the conditions that impurities and by-products, such as ethylene oxides and 1,4-dioxane, which are known carcinogenic materials, should be removed before they are mixed in cosmetic formulations. Most PEGs are commonly available commercially as mixtures of different oligomer sizes in broadly- or narrowly-defined molecular weight (MW) ranges. For instance, PEG-10,000 typically designates a mixture of PEG molecules (n = 195 to 265) having an average MW of 10,000. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), with the three names being chemical synonyms. However, PEGs mainly refer to oligomers and polymers with molecular masses below 20,000 g/mol, while PEOs are polymers with molecular masses above 20,000 g/mol, and POEs are polymers of any molecular mass. Relatively small molecular weight PEGs are produced by the chemical reaction between ethylene oxide and water or ethylene glycol (or other ethylene glycol oligomers), as catalyzed by acidic or basic catalysts. To produce PEO or high-molecular weight PEGs, synthesis is performed by suspension polymerization. It is necessary to hold the growing polymer chain in solution during the course of the poly-condensation process. The reaction is catalyzed by magnesium-, aluminum-, or calcium-organoelement compounds. To prevent coagulation of polymer chains in the solution, chelating additives such as dimethylglyoxime are used Safety Evaluation of Polyethyene Glycol (PEG) Compounds for Cosmetic Use: Toxicol Res 2015; 31:105-136 The Korean Society of Toxicology http://doi.org/10.5487/TR.2015.31.2.105

Isocyanate vapours/mists are irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis with wheezing, gasping and severe distress, even sudden loss of consciousness, and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning after a period of tolerance. A respiratory response may occur following minor skin contact. Skin sensitisation is possible and may result in allergic dermatitis responses including rash, itching, hives and swelling of extremities.

Isocyanate-containing vapours/ mists may cause inflammation of eyes and nasal passages.

Onset of symptoms may be immediate or delayed for several hours after exposure. Sensitised people can react to very low levels of airborne isocyanates. Unprotected or sensitised persons should not be allowed to work in situations allowing exposure to this material.

METHYL METHACRYLATE &
TDI/ GLYCEROL
ETHOXYLATED,
PROPOXYLATED
COPOLYMER

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely

Page **9** of **12**

Evo Glue

Issue Date: 20/08/2021 Print Date: 23/02/2024

distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

X − Data either not available or does not fill the criteria for classification
 y − Data available to make classification

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)	Species	Value	Source
Evo Glue	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	48h	Crustacea	69mg/l	1
	EC50	96h	Algae or other aquatic plants	170mg/l	1
methyl methacrylate	EC50	72h	Algae or other aquatic plants	>110mg/l	2
	EC0(ECx)	48h	Crustacea	48mg/l	1
	LC50	96h	Fish	>79mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
TDI/ glycerol ethoxylated, propoxylated copolymer	Not Available	Not Available	Not Available	Not Available	Not Available
Legend:	Ecotox databa	n 1. IUCLID Toxicity Data 2. Europe ECHA Regis ise - Aquatic Toxicity Data 5. ECETOC Aquatic H ation Data 8. Vendor Data			

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
methyl methacrylate	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
methyl methacrylate	LOW (BCF = 6.6)

Mobility in soil

Ingredient	Mobility
methyl methacrylate	LOW (KOC = 10.14)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- ▶ Consult State Land Waste Authority for disposal.
- ▶ Bury or incinerate residue at an approved site.
- ▶ Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

	· ·
Marine Pollutant	NO
HAZCHEM	•3YE

Evo Glue

Issue Date: 20/08/2021 Print Date: 23/02/2024

Land transport (ADG)

14.1. UN number or ID number	1133	
14.2. UN proper shipping name	ADHESIVES containing	g flammable liquid
14.3. Transport hazard class(es)	Class Subsidiary Hazard	3 Not Applicable
14.4. Packing group	П	
14.5. Environmental hazard	Not Applicable	
14.6. Special precautions for user	Special provisions Limited quantity	Not Applicable 5 L

Air transport (ICAO-IATA / DGR)

All transport (ICAO-IAIA / DO	•••		
14.1. UN number	1133		
14.2. UN proper shipping name	Adhesives containing flammable liqu	uid	
	ICAO/IATA Class	3	
14.3. Transport hazard class(es)	ICAO / IATA Subsidiary Hazard	Not Applicable	
ciass(cs)	ERG Code	3L	
14.4. Packing group	II		
14.5. Environmental hazard	Not Applicable		
	Special provisions		А3
	Cargo Only Packing Instructions		364
	Cargo Only Maximum Qty / Pack		60 L
14.6. Special precautions for user	Passenger and Cargo Packing In:	structions	353
usei	Passenger and Cargo Maximum Qty / Pack		5 L
	Passenger and Cargo Limited Quantity Packing Instructions		Y341
	Passenger and Cargo Limited Maximum Qty / Pack		1 L

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	1133		
14.2. UN proper shipping name	ADHESIVES containing flammable liquid		
14.3. Transport hazard class(es)	IMDG Class	3	
	IMDG Subsidiary Haz	zard Not Applicable	
14.4. Packing group	П		
14.5 Environmental hazard	Not Applicable		
14.6. Special precautions for user	EMS Number	F-E , S-D	
	Special provisions	Not Applicable	
	Limited Quantities	5 L	

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
methyl methacrylate	Not Available
TDI/ glycerol ethoxylated, propoxylated copolymer	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

Product name	Ship Type
methyl methacrylate	Not Available
TDI/ glycerol ethoxylated, propoxylated copolymer	Not Available

Evo Glue

Issue Date: 20/08/2021
Print Date: 23/02/2024

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

methyl methacrylate is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 10 / Appendix C

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

TDI/ glycerol ethoxylated, propoxylated copolymer is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

Australian Inventory of Industrial Chemicals (AIIC)

Additional Regulatory Information

Not Applicable

National Inventory Status

National Inventory	Status Yes	
Australia - AIIC / Australia Non-Industrial Use		
Canada - DSL	Yes	
Canada - NDSL	No (methyl methacrylate; TDI/ glycerol ethoxylated, propoxylated copolymer)	
China - IECSC	Yes	
Europe - EINEC / ELINCS / NLP	Yes	
Japan - ENCS	Yes	
Korea - KECI	Yes	
New Zealand - NZIoC	Yes	
Philippines - PICCS	Yes	
USA - TSCA	Yes	
Taiwan - TCSI	Yes	
Mexico - INSQ	No (TDI/ glycerol ethoxylated, propoxylated copolymer)	
Vietnam - NCI	Yes	
Russia - FBEPH	No (TDI/ glycerol ethoxylated, propoxylated copolymer)	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.	

SECTION 16 Other information

Revision Date	20/08/2021
Initial Date	06/12/2018

SDS Version Summary

Version	Date of Update	Sections Updated
7.1	01/11/2019	One-off system update. NOTE: This may or may not change the GHS classification
8.1	20/08/2021	Classification change due to full database hazard calculation/update.

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- ▶ PC TWA: Permissible Concentration-Time Weighted Average
- ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit
- ► IARC: International Agency for Research on Cancer
- ACGIH: American Conference of Governmental Industrial Hygienists
- STEL: Short Term Exposure Limit
- ► TEEL: Temporary Emergency Exposure Limit。
- ► IDLH: Immediately Dangerous to Life or Health Concentrations
- ES: Exposure Standard
- OSF: Odour Safety Factor
- NOAEL: No Observed Adverse Effect Level
- LOAEL: Lowest Observed Adverse Effect Level
- TLV: Threshold Limit Value
- ► LOD: Limit Of Detection
- ► OTV: Odour Threshold Value
- BCF: BioConcentration Factors

Chemwatch: 5329-40 Page 12 of 12 Version No: 8.1

Evo Glue

Issue Date: 20/08/2021 Print Date: 23/02/2024

- ► BEI: Biological Exposure Index
- ▶ DNEL: Derived No-Effect Level
- ▶ PNEC: Predicted no-effect concentration
- ► AIIC: Australian Inventory of Industrial Chemicals
- ► DSL: Domestic Substances List
- ▶ NDSL: Non-Domestic Substances List
- ► IECSC: Inventory of Existing Chemical Substance in China
 ► EINECS: European INventory of Existing Commercial chemical Substances
- ▶ ELINCS: European List of Notified Chemical Substances
- NIP: No-Longer Polymers

 ENCS: Existing and New Chemical Substances Inventory

 KECI: Korea Existing Chemicals Inventory

 NZIoC: New Zealand Inventory of Chemicals

- ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances
- TSCA: Toxic Substances Control Act
 TCSI: Taiwan Chemical Substance Inventory

- INSQ: Inventario Nacional de Sustancias Químicas
 NCI: National Chemical Inventory
 FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.